US009471646B2

a2 United States Patent
Fablet et al.

US 9,471,646 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SERVER DEVICE FOR
EXCHANGING INFORMATION ITEMS
WITH A PLURALITY OF CLIENT ENTITIES

(71) Applicant: CANON KABUSHIKI KAISHA,
Tokyo (JP)
(72) Inventors: Youenn Fablet, La Dominelais (FR);
Romain Bellessort, Rennes (FR);
Herve Ruellan, Rennes (FR)
(73) Assignee: Canon Kabushiki Kaisha, Tokyo (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 271 days.
(21) Appl. No.: 14/341,695
(22) Filed: Jul. 25, 2014
(65) Prior Publication Data
US 2015/0032804 Al Jan. 29, 2015
(30) Foreign Application Priority Data
Jul. 26, 2013 (GB) .eeveviireerecictceciccenee 1313418.4

(51) Int. CL

GO6F 15/16 (2006.01)
GO6F 17/30 (2006.01)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
(52) US. CL
CPC ... GO6F 17/30545 (2013.01); HO4L 67/02
(2013.01); HO4L 67/10 (2013.01); HO4L 67/26
(2013.01); HO4L 69/04 (2013.01); HO4L 69/22
(2013.01)
(58) Field of Classification Search

CPC HO04L 67/02; HO4L 69/04; HO4L 69/22
USPC 709/247, 203
See application file for complete search history.

300
.

inlifai Header Tabte:

0 [stws 200

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0145313 Al 6/2011 Narayanan et al.

2013/0086353 Al* 4/2013 Colgrove GOG6F 3/0608
711/206
2013/0185536 Al* 7/2013 Mari ...ccccovvevvenenee. GOGF 12/08
711/216

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0933876 Al 8/1999

OTHER PUBLICATIONS

Peon et al., HTTP Header Compression, draft-ietf-httpbis-header-
compression-00, Jun. 25, 2013, all pages.™

(Continued)

Primary Examiner — Hieu Hoang

(74) Attorney, Agent, or Firm — Canon USA, Inc. L.P.
Division

(57) ABSTRACT

The invention concerns a method of exchanging information
items, e.g. HITP headers, between a server device and a
plurality of clients, and also concerns such a server device.
The server device establishes connections with clients,
wherein each connection involves a server-initiated indexing
table for the server device to encode information items to be
sent over the connection in the server-to-client direction.
The method comprises the following steps performed at the
server device: obtaining a same single indexing table as the
server-initiated indexing table of the connections; in
response to receiving a request for data from a client,
pushing entries of the table to the client to configure the
latter for item exchange in the server-to-client direction,
encoding information items associated with the requested
data using item indexing based on the table and sending the
encoded information items to the client over the connection
established with it.

20 Claims, 12 Drawing Sheets

1Mo}

Li(contsnt-tyws: texthinl charsei=UTF-8) | 7

LHiNcantent-fength: 200)

303

Response A encoding

)

Dynarmic Hestsr Tabls

o] smius 200

11 contenttype | tetitm; sharser=UTF-8

2] coneatctyse 8

B}

1)

LHN{contortangth: 400)

US 9,471,646 B2
Page 2

(56) References Cited OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS Belshe et al., Hypertext Transfer Protocol version 2.0, draft-ietf-
. . httpbis-http2-04, Jul. 8, 2013, all pages.*
2014/0149605 Al* 5/2014 Annamalaisami HO041 41/00
709/247
2014/0355627 Al* 12/2014 Bellessort HO041L 69/04
370/477 * cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 12 US 9,471,646 B2
100 110
e e
Set 0 Set 1
url hitp://fexample.com/123 url http://fexample.com/456
method | GET method | GET
cookie | abcdefgh cookie | abcdefgh

f 120
Header Table after Set 0.encoding
Index Header Name Header Value
0 url http:/fexample.com/123
1 method GET
2 cookie abcdefgh
Ve 130

Set 1 Encoding

(Set 0 used as reference list)

Meaning

{H(0), indexed header 0 in header table

To be removed from reference list
(since present in said list)

url

http://example.com/456

To be added to reference list
(since not present in said list)

Fig.

1

U.S. Patent

Oct. 18, 2016

200
e

Req

{GET index.html)

uest A

Accept

text’htmi;q=0.9,*/*;g=0.8

Sheet 2 of 12

210
e

Response A
{200 OK)

Status

200

Content-Type

texd/htmi; charset=UTF-8

Accept-Encoding gzip, deflate Content-
800
Length
(2a)
/ 230
Response B
220
e (200 OK)
Request B
{GET style.css) Status 200
Accept text/css,*/*,q=0.1
Content-Type text/css; charset=UTF-8

Accept-Enceding

gzip, deflate

Content-Length

400

(2b)
/ 240 /— 250
Header Table Header Table
0 status 200 0 status 200
1 content-type { text/htmi; charset=UTF-8 1 | content-type | text/css; charset=UTF-8
2 content-type { text/css; charset=UTF-8 2 | content-type | texthtml, charset=UTF-8

(2c)

Fig. 2

(2d)

US 9,471,646 B2

U.S. Patent Oct. 18, 2016 Sheet 3 of 12 US 9,471,646 B2

/ 300

Initial Header Table f 310
0 status 200
Static Header Table
0 status 200
301 1 {content-type |text/css; charset=UTF-8
/ 2 |content-type text/htmil; cgarset:UTF-
Response A'encoding
3 status 304
IH(0) [3
LH{content-type: text/html; charset=UTF-8
(P) PUSH_PROMISE #1
LHN(content-length: 800) IH4(0)
LH (content-type: text/css; charset=UTF-8)

/ 302
312
f

Response B encoding PUSH PROMISE #2 /

IH(0) LH{content-type: text/ntmi; charset=UTF-8)
LH(content-type: text/css; charset=UTF-8) LH(status: 304)
LHN(content-length: 400) [313
Response A encoding
303 IH(0)
/ IH(2)
Dynamic Header Table LHN(content-length: 800)
0 status 200
1| content-type | text/html; charset=UTF-8 [314
2 | content-type | text/css; charset=UTF-8 Response B encoding
IH(0)
IH(1)

LHN(content-tength: 400)

Fig. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 12 US 9,471,646 B2

(4a)
. A
equest A B,C,D&R, ES‘S”E Sent
forRy Requests for A, B, R, &R, H&I
C.D&R, Requests for E, F, /
G R; &R, Requests for H & 1

\ (4b) /

/ Sent R, \

}/ Pushed A, B, C &D Sent R,
Request / Pushed F & G
forR, SentR; & R,

Requests for R, Pushed E, H & |
Requests R; & R,

\ (4c) /

SentR,
/ Pushed A/B,C&D

Pushed R
Request R, 2 SentRy, R, F&G

Requests for R, R4,|/ Pushed E, H, &I
F&G

(4d)

Fig. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 12

Generate a static header
table

/ 500

Split in header blocks

/ 501

Generate frames

/ 502

> Wait for request

/ 503

New connection?

504

No

Send frames

/ 505

— Process request

/ 506

Fig. 5

US 9,471,646 B2

U.S. Patent Oct. 18, 2016

/ 600

Sheet 6 of 12

US 9,471,646 B2

Get a header to encode

Header as
template entry?

Update header to match
template entry

/ 602

603

eader matching
table entry?

Yes

Encode header as
indexed

/ 604

/ 606

Encode literally the header

Update header statistics

/ 605

607

Remaining header ?

End

/ 608

Fig. ©

U.S. Patent Oct. 18, 2016

Wait for header table
update need

f 700

Compute header table
update

/ 701

Generate
PUSH_PROMISE

/ 702

Advertise header table
change to connections

/ 703

End

/ 704

Fig. 7

Sheet 7 of 12

US 9,471,646 B2

Y

Wait for header block

/710

No

Header table
to update?

Yes

/ 711

Send PUSH_PROMISE

f712

>

Send header block

f713

U.S. Patent

800 \

Oct. 18, 2016

Receive a frame

801

Frame with header?

PUSH_PROMISE?

Sheet 8 of 12

US 9,471,646 B2

802

Process frame

SUSH_PROMIS

nder processing?

807

No

e

[
Digital
camera 5

/ 808
Flag PUSH_PROMISE Wait for PUSH_PROMISE
processing processing
805 809
) J [
Gather header table Distribute header
update processing
\J/ 806 \l/ 810
Update header table End
Fig. 8
10
ROM ™ ol
14A Program 14
\\ =
Fig. 9
CPU ™~ 13 N 16
RAM
Screen 9
T —
Communication Network
Keyboard Interface
19
i 3
Hard disk - 15 J
¢ Card I/O Microphone
. , A
Dl.Sk drive N7 12 6

U.S. Patent Oct. 18, 2016 Sheet 9 of 12 US 9,471,646 B2

Server

H1
H2
H3
(10a)
Server Message Client
1: H1
2: H2 \ LH(H1) l
3: H3 LH(HZ)
LH(H3) 1: H1
Header table > H2
Header block 3- H3
part 1 Header table
H1
H2
H3
(10b) Header set

Fig. 10

U.S. Patent Oct. 18, 2016 Sheet 10 of 12 US 9,471,646 B2

1: H1
3: H3 LH(H2)
1: H1
Header table LH(H3) 2 H2
Header block
part 1 3: H3
Header table
IH(1) \
E o

IH(2)
IH(3) Q} gg

Header block
part 2 l

Header set

(10c)

Fig. 10 (cont.)

U.S. Patent

Server

1: H1

2: H2

3: H3

Header table

H1

H2

Oct. 18, 2016

Message

Sheet 11 of 12

/

LH(H1)

LH(H2)

LH(H3)

Header block

part 1

IH(1)

IH(2)

IH(3)

Header block

part 2

\

IH(1)

H4

Header set
to transmit

IH(2)

7ZI

LHN(H4)

=

Header block

part 3

\ Header block

US 9,471,646 B2

Client

1: H1
2: H2
3: H3
Header table

Literat headel %
not/to index

> H1

T H2
> H4
Header set

__HEADER frame /

(10d)

Fig. 10 (cont.)

U.S. Patent Oct. 18, 2016 Sheet 12 of 12 US 9,471,646 B2

Message
1: H1 / \
2: H2 T LH(H1) J
3: H3 | LHH2) |~ 1: H1
Header table LH(H3) \ 2: H2
PUSH_PROMISE 3: H3
\ frame / Header table
s R
HA1 IH(1) T i
H2 1H(2) T o
H4 LHN(H4) I B N]
Header block
Header set part 1 Header set
to transmit
N J
\HEADER frame /
(10e)

Fig. 10 (cont.)

US 9,471,646 B2

1
METHOD AND SERVER DEVICE FOR
EXCHANGING INFORMATION ITEMS
WITH A PLURALITY OF CLIENT ENTITIES

This application claims priority from GB patent applica-
tion No. 1313418.4 of Jul. 26, 2013 which is incorporated
herein by reference.

FIELD OF THE INVENTION

The invention belongs to the field of network communi-
cation, and in particular to the field of data encoding (or
compression) using item indexing based on an indexing
table.

More particularly, the present invention concerns a
method of exchanging information items between a server
device and a plurality of client entities, and also concerns
such a server device.

BACKGROUND OF THE INVENTION

Data to be encoded often include or are associated with
lists or groups of items of information that are also to be
compressed at an encoder and decompressed at a decoder.
This is for example the case for HTTP (standing for Hyper-
text Transfer Protocol) where HTTP headers are added to
requested data to provide additional information, for
example in relation with the connection or protocol used or
in relation with the requested data that are sent.

Another example is document or media metadata repre-
sented as JSON (standing for JavaScript Object Notation)
key-value sets or XML data (standing for Extensible Markup
Language).

HTTP is commonly used to request and send data such as
web resources, web pages being particular web resources.
HTTP is based on a client/server architecture, wherein a
client entity initiates a connection with a server device, then
sends requests for data, namely HTTP requests, to the server
device. Thereafter, the server device replies to the client
entity’s requests with responses, namely HTTP responses
that include the requested data and the so-called HTTP
headers.

While in the initial deployment of HTTP, a TCP/IP
bidirectional connection was established for each HTTP
request/response exchange, SPDY protocol enables several
HTTP requests and responses to be sent over a unique
TCP/IP bidirectional connection between the client entity
and the server device. Based on such persistent bidirectional
connection, all the components of a web page (HTML
documents, images, JavaScript, etc.) may share the same
TCP/IP connection, thus speeding up the web page loading.

The server device usually handles requests for data from
a plurality of client entities and provides responses thereto.
Some client entities may be embodied within the same
device, for example as various client applications requesting
the server device. Some other client entities may correspond
to the same number of separate client devices.

The explanation and description below concentrate on
HTTP headers in HITP messages, whereas the invention
may apply to any list or group of items of information that
is encoded or compressed using indexing mechanism.

The HTTP requests and HTTP responses are messages
that comprise various parts of data, including header items
and payload data. The HTTP headers of an HTTP message,
and more generally the headers of a message, form a set of
headers, i.e. items of information of a particular type. They
are added into the beginning of the response message, before

10

20

40

45

2

the payload data, to provide additional information useful
for various purposes. For example, they may give protocol-
based information vital to convey efficiently the response
message over the connection implementing the protocol.
They may also provide information about the payload data
themselves, for example regarding the nature of the date, an
image size, etc., this information being necessary for an
addressee client entity or application to correctly handle the
data.

An HTTP header generally consists of a name along with
a corresponding value.

For instance, in the header “Host: en.wikipedia.org”, Host
is the header name, and its value is “en.wikipedia.org”. This
header is used to indicate the host of the requested web
resource (for instance, the Wikipedia page describing HTTP,
available at http://en.wikipedia.org/wiki/HTTP).

Conventional HTTP provides compression of the HTTP
payload data before the HTTP message is transmitted, while
the set of HTTP headers is not compressed but literally
represented, i.e. it is encoded as text data. Literal represen-
tation consists in encoding a header by encoding its name
and its value as strings.

However, the headers tend to be redundant in successive
messages. This is the case for HTTP.

Textual encoding is not efficient in this situation, resulting
in some HTTP improvements to have emerged with a view
of defining more compact encodings.

HTTP/2.0 standard has been developed in this context and
proposes a mechanism for encoding HTTP headers using
item indexing based on an indexing table (or compression
dictionary). HT'TP/2.0 uses a dynamic compression scheme
to optimize the size of the representation of HT'TP message
headers.

A header indexing table (or header table) is defined that
comprises a list of entries with which respective coding
indexes are associated, each entry being a (header name,
header value) pair.

The header indexing table is filled with some headers,
selected by the encoder, that are encoded using literal
representation. It is said that the literally encoded header is
indexed in the table, i.e. is added to the header indexing
table.

Two different kinds of indexing are available: incremental
indexing where the literally encoded header is appended to
the header table, thus having the next available index, and
substitution indexing where the literally encoded header
replaces a header previously present at a given index in the
header indexing table. Note that in the case of substitution
indexing, the substituted index is encoded to fully define a
substitution indexing and make it possible for a decoder to
perform the same substitution in a local corresponding
header indexing table. Similarly, the literally encoded head-
ers that are to index in the header table are flagged when
transmitted to the decoder for the latter to be able to build the
same header table as the encoder.

The above-defined literal representation of headers may
optionally include the encoding of the header name by using
the index associated with an entry already present in the
header indexing table and having the same name.

Compression efficiency is obtained by the indexed repre-
sentation of headers that occur for the second or more time.
The indexed representation consists in encoding a header by
encoding the index associated with the same header in the
header indexing table.

Additional mechanisms further improve compression.

For example, according to HTTP/2.0 standard, a set of
headers is encoded by taking the previous set of headers as

US 9,471,646 B2

3

a reference: only the differences with the previous set of
headers are encoded. This is to take advantage of high
redundancy between consecutive sets of HTTP headers (i.e.
between the headers of consecutive HTTP messages).

To illustrate this mechanism, it is assumed that there are
few differences between a set N of headers already encoded
and a next set N+1 of headers to be encoded. Instead of
encoding set N+1 by encoding all its headers, set N+1 is
encoded by encoding the sole differences with set N.

To be noted that not all the headers of set N are used as
a reference list for encoding set N+1: only the indexed
headers of set N are present in the reference list for set N+1.
This is because a header of set N that is not indexed is
presumably unlikely to occur again in the next set N+1 of
headers (otherwise, it would have been indexed).

The mechanism of header encoding with reference is
further illustrated with reference to FIG. 1 that shows a first
set 0 of headers (reference 100) which is encoded prior to a
second header set 1 (reference 110). In this simple and
illustrative example, the two header sets are made of three
headers, a “url” header, a “method” header and a “cookie”
header.

It is considered that the three headers of header set 0 have
been literally encoded and then indexed in the header
indexing table 120. Hence, after encoding of set 0, the
header indexing table 120 comprises those three headers,
with indexes ranging from 0 to 2.

Based on the above mechanism, the encoding of header
set 1 takes header set 0 as a reference list of headers. The
differences between header set 0 and set 1 are determined:
the sole difference in the example is the value of the “url”
header from set 0. Therefore, two information items have to
be encoded, as shown in table 130:

the “ur]” header from set 0, which is present in the

reference list for set 1, has to be removed. According to
HTTP/2.0 standard, this may be done by encoding its
index “IH(0)” (second line of table 130). There is no
need to indicate whether this index corresponds to an
addition or deletion of an entry in the header indexing
table. This is because, since the header associated to
this index is already present in the reference list (pre-
viously encoded header set), its presence in the list of
differences only indicates a deletion according to the
above-mentioned standard (a pair (name, value) cannot
be present more than once in a set of headers); and
the “url” header from set 1, which is not present in the
reference list, has to be added. This is done by encoding
the “url” header of set 1 (third line of table 130), for
instance using a literal representation. The presence of
this header necessarily corresponds to an addition,
since said header is not present in the reference list.

Another mechanism is delta encoding which provides
encoding of a header value using reference to a previously
indexed header value (although the values are different) and
encoding the difference between the two values. For instance
a common prefix between the header value and the previ-
ously indexed header value is determined, and then a length
of the common prefix is encoded followed by the characters
that differ between the two values).

Taking the example of URLs, a header (“url”, “http://
example.com/456”) could thus be encoded as a reference to
a previous header (“url”, “http://example.com/123”) already
present in the header indexing table. In this case, the
following information is encoded:

the index of the previous header in the header indexing

table;

10

15

20

25

30

35

40

45

50

55

60

65

4

a length of “19”, corresponding to the common prefix
between the values “http://example.com/456” and
“http://example.com/123”; and

the suffix to be added to said common prefix (“4567).

This is to take advantage of high redundancy between
consecutive sets of HTTP headers (i.e. between the headers
of consecutive HTTP messages) to reduce the size of result-
ing encoded header data.

The header indexing mechanism explained above may
also involve other representations (for instance, some values
may be encoded as typed values, e.g. using binary encoding
for integers and dates) and/or Huffman encoding or Deflate
to improve the encoding of headers.

The header indexing scheme described above takes place
during the HTTP request/response exchange between a
server device and a client entity.

Due to the different nature of the requests and responses,
the two directions of communication in the bidirectional
connection do not usually convey headers having the same
names. To take advantage of this difference with a view of
optimizing compression, a HTTP node, either the server
device or the client entity, manages two header indexing
tables: the first one, referred to as a decoding header
indexing table, for decoding headers from incoming mes-
sages, and the second one, referred to as an encoding header
indexing table, for encoding headers of outgoing messages.

The header indexing tables are generated at their respec-
tive encoding sides. That means that there are a server-
initiated indexing table and a client-initiated indexing table
for each connection.

It is known from publication GB 2,496,385 a client entity
and a server device that initialize respective initial compres-
sion dictionaries with information shared between them, for
example headers they often use. This makes it possible to
achieve good compression right from the first headers to be
encoded and transmitted.

Regardless publication GB 2,496,385, each header index-
ing table is filled progressively with headers that are
indexed, when encoding the headers at the encoding side and
correspondingly decoding the headers at the decoding side.
It results that the decoding indexing table at the client entity
is at last similar to the server-initiated indexing table.
Reversely, the decoding indexing table at the server device
is at last similar to the client-initiated indexing table.

Since the server device responds to client entities’
requests for data, the order of the responses is generally
dependent on the order of the requests. This in turns has an
effect on what is indexed in the server-initiated header
indexing table and how it is indexed.

First, if comparing two server-initiated header indexing
tables for two bidirectional connections established between
the server device and two respective client entities, not all
the headers from one server-initiated indexing table will be
indexed in the other server-initiated indexing table.

For instance, in a case where a client entity only requests
valid web resources, the server-initiated header indexing
table will not contain any ‘status: 404 header. However, if
the other client entity requests a web resource that does not
exist on the server device, the server-initiated header index-
ing table will probably contain a ‘status: 404” header.

In addition, the order of the responses has also an impact
on the indexes assigned to the entries in the server-initiated
header indexing table, thus resulting in different server-
initiated indexing tables for different connections. This is
illustrated with reference to FIG. 2, wherein FIG. 2a repre-
sents headers in a HT'TP request/response exchange A for the
retrieval of a web page named “index.html”, and FIG. 25

US 9,471,646 B2

5

represents headers in a HT'TP request/response exchange B
for the retrieval of a CSS file named “style.css”.

The server-initiated header indexing table 240 (shown in
FIG. 2¢) is generated by the server device on processing
(encoding) response A 210 prior to response B 230. The
server-initiated header indexing table 250 (shown in FIG.
2d) is generated by the server device on processing (encod-
ing) response B prior to response A. In both cases, the
‘content-type’ and ‘status’ headers are indexed.

As can be seen from FIG. 2¢ and FIG. 2d, the server-
initiated header indexing tables 240, 250 are different: the
header entries are the same but the indexes associated with
the two ‘content-type’ headers are not the same.

The above shows that HTTP/2.0 standard provides a
dynamic header compression that is adapted to each client/
server connection and adapts itself based on the HTTP
headers that are encoded. One component contributing to
this dynamic behavior is the server-initiated header indexing
table specific to each client/server connection.

The server-initiated header indexing tables for the bidi-
rectional connections with client entities and the processing
based on these tables mandate processing and memory costs
for client entities and server devices compliant with HTTP/
2.0. In particular, these costs increase linearly with the
number of client entities for the server device.

This may cause issues for server or proxy devices that
have a large number of concurrent connections with client
entities, in particular for small embedded devices such as
CoAP (standing for Constrained Application Protocol) tar-
geted devices.

SUMMARY OF THE INVENTION

The present invention has been devised to address one or
more of the foregoing concerns, with a possible view of
reducing processing and memory costs at the server device
while keeping conventional client entities and devices.

In this context, according to a first aspect of the invention
there is provided a method of exchanging information items
(such as HTTP or metadata represented as JSON or XML)
between a server device and a plurality of client entities, the
server device establishing a plurality of connections with the
plurality of client entities, wherein each connection involves
a server-initiated indexing table for the server device to
encode information items to be sent over the connection in
the server-to-client direction, the method comprising the
following steps performed at the server device:

obtaining a same single indexing table as the server-
initiated indexing table of the connections with two or more
client entities;

in response to receiving a request, generally the first one,
for data from any of the two or more client entities:

pushing at least one entry of the single indexing table to
the requesting client entity to configure the latter for decod-
ing encoded information item exchanged in the server-to-
client direction,

encoding information items associated with the requested
data using item indexing based on the single indexing table,
and

sending the requested data along with the encoded infor-
mation items to the requesting client entity over the con-
nection established with it, after having pushed the at least
one entry to the requesting client entity.

The concept of pushing information, whatever the infor-
mation items are, is known by the man skilled in the art, and
therefore does not require detailed description. In short, the
concept of pushing describes a style of Internet-based com-

10

15

20

25

30

35

40

45

50

55

60

65

6

munication where the request for a given transmission is
initiated by the sender or server device. It contrasts with the
concept of pulling, where the request for the transmission of
information is initiated by the receiver or client entity.

Some examples of commands for pushing entries of the
indexing table to the client entities are given below.

Thanks to the invention, the server device sends or pushes
in advance indexed headers that it is going to use for future
item indexing, to the client entities. Since the server device
has the control on these indexed headers, the server device
is able to assign the same indexes for a group or all of the
connections.

This results in handling a single server-initiated indexing
table at the server device for a group or all of the client
entities, instead of one server-initiated indexing table per
connection. The memory used at the server device is thus
decreased.

Furthermore, since the same indexes are used for various
connections set up between the server device and client
entities, the index assignment may be hardcoded in the
server device, which may further improve the throughput of
encoders. This thus tends to also reduce the processing costs.

In addition, by using the push technology, the invention
may be used with conventional client entities, i.e. that do not
embed components specific to the invention.

Correspondingly, according to a second aspect of the
invention there is provided a server device configured to
exchange information items with a plurality of client enti-
ties, the server device including

a communication module to establish a plurality of con-
nections with the plurality of client entities, wherein each
connection involves a server-initiated indexing table for the
server device to encode information items to be sent over the
connection in the server-to-client direction, the server device
further comprising:

a single indexing table used as the server-initiated index-
ing table of the connections with two or more client entities;

an indexing table push module configured, in response to
receiving a request for data from any of the two or more
client entities, to push at least one entry of the single
indexing table to the requesting client entity to configure the
latter for decoding encoded information item exchanged in
the server-to-client direction;

a data encoder configured to encode information items
associated with the requested data using item indexing based
on the single indexing table, wherein the requested data are
sent along with the encoded information items to the
requesting client entity over the connection established with
it, after the indexing table push module has pushed the at
least one entry to the requesting client entity.

Optional features of the invention are further defined in
the dependent appended claims. Where a feature is described
in terms of process below, one skilled in the art will be able
to implement it as a functional element in the server device
of the invention.

According to an embodiment, all the entries of the single
indexing table are pushed to the requesting client entity
before sending one or more information items associated
with the requested data. This is to initially fully configure the
client entity. Pushing only some entries of the single index-
ing table may be profitable when updating a decoding
indexing table at the client side. The need to update the
decoding indexing table at the client side may result for
example from an update of the single indexing table or from
the switch of the client entity between two groups of clients
to which the server device has assigned different encoding
indexing table.

US 9,471,646 B2

7

According to other embodiments, the same single index-
ing table is defined as the server-initiated indexing table of
all the connections the server device has established with
client entities. This configuration requires the low amount of
memory at the server side to store the server-initiated
indexing table.

According to an embodiment, the single indexing table is
used to index HTTP headers in HTTP responses. This is a
particular technical domain where the invention provides
good performances.

In particular, a pushed entry of the single indexing table
includes a template entry defined by a header name, an index
and no specific header value. Concurrent connections often
convey similar headers that have different values, for
example headers identifying the communicating devices
and/or the connection and/or the time, etc. The above
provision makes it possible to offer compression of such
headers with a single entry shared between the concurrent
connections.

According to another embodiment, the single indexing
table is computed from past statistics on information items
already encoded by the server device over two or more
connections established with client entities. This is to build
the server-initiated indexing table with, for example, the
most used (i.e. popular) headers. Indeed, in such configu-
ration, compression ratio of the headers is optimized. For
example, a list of items already encoded can be arranged in
order according to an ordering criterion (for instance the
number of occurrences of each header within a sliding time
window) and the first headers in the order can be succes-
sively considered and selected to fill the single indexing
table, until the indexing table reaches a predetermined
memory size.

In embodiments of the invention, the entries to be pushed
of the single indexing table are split into two or more
ordered blocks that keep the order of the entries in the single
indexing table, and the resulting blocks are pushed to the
requesting client entity following the order. Each block may
thus be sent as a set of information items (e.g. headers) to be
indexed by the client entity. The above provision ensures the
push of the considered entries to comply with rules of
standards. For example, particular HTTP/2.0 implementa-
tions may require that a header block only comprise one
“status” headers. Thanks to the splitting, two “status” head-
ers are therefore distributed into two blocks.

In other embodiments of the invention, the pushed entries
are pushed to the requesting client entity as new information
items to index, in the same order as they are ordered in the
single indexing table. In other words, the table is not sent as
such, but each item therein to be pushed is pushed to the
client with an indication that it must be added to the local
indexing table (this is done by literal encoding plus indexing
flag). To ensure that the same indexing table is obtained at
the client side, the server device must keep the order of the
items as defined in the single indexing table, because index-
ing is usually incremental.

In yet other embodiments of the invention, the pushed
entries are pushed to the requesting client entity using one or
more PUSH_PROMISE frames defined in the HTTP/2.0
standard that keep the order of the entries in the single
indexing table. This innovative use of the PUSH_PROMISE
frame of HTTP/2.0 facilitates the compliance of the inven-
tion with conventional (in the meaning of HTTP/2.0) client
entities.

In a variant, the response sending the requested data along
with the encoded information items includes a (first)
HEADER frame defined in the HTTP/2.0 standard, and the

10

35

40

45

55

8

(first) HEADER frame includes the pushed entries keeping
their order in the single indexing table, followed by the
encoded information items. In other words, the pushed
entries’/headers defining all or part of the single indexing
table starts the HEADER frame and then the information
items/headers forming the response to the client’s request
are appended to the end of the pushed entries/headers. This
ensures the client entity to first build the single indexing
table pushed by the server device, before processing the
encoded information items which may depend on the index-
ing table. Advantageously, this should be done in the first
HEADER frame forming the response to the first request
from the client entity, to ensure the latter to start processing
any encoded data from the server device with the appropri-
ate indexing table.

This variant may be used when the PUSH_PROMISE
frame is not available.

According to a particular feature, the HEADER frame
further includes, prior to the encoded information items, a
removal instruction for each pushed entry to instruct the
requesting client entity to remove each corresponding infor-
mation item from a current decoded information item set.
This configuration is specific to the use of the HEADER
frame. This is because the pushed entries lead the client
entity to create corresponding entries in a local decoding
header indexing table but also to build a decoded header set
that includes the headers corresponding to the pushed
entries. However these headers are not associated with
requested data, and may have no meaning for the client
entity. The above provision thus ensures the client entity to
actually erase or reinitiate its current decoded header set
before receiving the first headers associated with the
requested data.

As an example based on HTTP/2.0, the removal instruc-
tion in the HEADER frame to remove an information item
is the same information item encoded using the correspond-
ing index in the single indexing table. According to HTTP/
2.0, sending an indexed header that is already present in the
current header set of the decoder leads to deleting this header
from the set. The above provision thus empties efficiently
the current header set of conventional HTTP/2.0-compliant
client entities, with low complexity and low bit costs.

In embodiments, the method further comprises, at the
server device, updating statistics on information items upon
encoding such information items using item indexing based
on the single indexing table. For example, the statistics may
include a hit/miss ratio of the single indexing table when
encoding the information items using item indexing, i.e. the
number of times an index is found (hits) in the indexing table
when encoding an information item out of the number of
times such an index is not found (misses).

These provisions make it possible to monitor the rel-
evancy of the single indexing table that is currently used.

In embodiments, the method further comprises, at the
server device, updating the single indexing table based on
updated past statistics on the connections with the two or
more client entities. This is to adjust the single indexing
table to the evolving context of exchanged data. This is
because some items of information that are indexed may no
longer be relevant as the time goes.

In a particular embodiment, the updating is triggered
when updated past statistics representing a hit/miss ratio of
the single indexing table when encoding the information
items using item indexing or when an average compression
ratio of last encoded information items becomes lower than
a predetermined threshold. These two criteria (hit/miss ratio
and average compression ratio) reflect how efficient the

US 9,471,646 B2

9

current server-initiated indexing table is. In this context, the
above provision ensures an efficient single indexing table to
be continuously used.

In another particular embodiment, a new entry of the
updated single indexing table is assigned the same index as
an entry of the old single indexing table that matches the
new entry. In the HTTP context, such entries may be new
headers to be indexed. The above configuration provides that
the same header keeps its index in the old and updated
server-initiated indexing tables. It results that there is no
need to send specific instructions to the client entity to
update these particular entries.

In yet another particular embodiment, a new entry having
an entry name and an entry value in the updated single
indexing table is assigned the same index as an entry of the
old single indexing table that has the same entry name but
a different entry value. This is also to limit the size of
instructions to update these particular entries, because a
substitution instruction without re-encoding the entry name
is sufficient. Of course, preference is given to assign an
index corresponding to an already existing entry that entirely
matches the new entry, meaning that the provision based on
different entry value is used when the previous provision
based on matching entry cannot be met.

In yet another particular embodiment, all entries of the
updated single indexing table are pushed only to any client
entity establishing a new connection with the server device,
the already existing connections with the server device
relying on the old single indexing table. This provision is
particularly suitable for short-time connection since it is
unlikely that the pushed indexing table becomes outdated.

In a variant to this particular embodiment, entries of the
updated single indexing table are pushed to the client entities
of open connections using one or more PUSH_PROMISE
frames defined in the HTTP/2.0 standard. This may be used
for longer connections. The client entities will then update
their local server-initiated decoding indexing table with the
received entries. In particular, the entries of the updated
single indexing table pushed to the client entities only
include the differences between the previous and updated
single indexing tables. This is to reduce the amount of data
to transmit to the clients to update their decoding indexing
tables.

According to a particular feature of this variant, the push
of entries of the updated single indexing table to a client
entity is triggered upon receiving a new request for data
from the client entity. This is to be compliant with the
HTTP/2.0 standard.

In embodiments, the method further comprises, at the
server device, augmenting the single indexing table used as
server-initiated indexing table for a connection with a client
entity with additional entries specific to the connection, the
additional entries corresponding to encoded information
items associated with data requested on the connection. This
provides specific per-connection entries in the indexing
table, thus resulting in improved compression.

Such additional entries may form an additional (dynamic)
server-initiated indexing table for the connection, in which
case the pushed server-initiated indexing table can be seen
as purely static. In such situation, the server device can
handle the same pushed server-initiated indexing table for
two or more or even all the connections and small specific
(dynamic) server-initiated indexing table for some indi-
vidual connections.

In a particular embodiment, the step of augmenting is
triggered on detecting a low compression ratio and/or low
connection quality of the connection compared to a respec-

10

15

20

25

30

35

40

45

50

55

60

65

10

tive threshold. This provision makes it possible to discrimi-
nate between efficient connections for which the pushed
entries of the server-initiated indexing table are sufficient
and bad connections for which providing additional indexed
items may substantially increase its efficiency in terms of
compression. On overall, it improves management of com-
pression with a plurality of client entities, by the server
device.

In a variant to augmenting the single indexing table, the
method comprises using, for each connection in the server-
to-client direction, the obtained single indexing table with-
out indexing any new item selected from the encoded
information items associated with the data requested on the
connection. This provision is to limit the processing costs at
the server device.

In embodiments, the connections are bi-directional con-
nections involving, in addition to the server-initiated index-
ing table, a client-initiated indexing table per connection for
the server device to decode encoded information items
received over the respective connection in the reverse direc-
tion. As explained above, this client-initiated indexing table
is similar to the client-initiated indexing table used as
encoding table at the corresponding client entity.

Another aspect of the invention relates to a method of
exchanging information items between a server device and
a plurality of client entities, the server device generating a
single server-initiated indexing table for the server device to
encode information items to be sent over any connection
with a client entity in the server-to-client direction, the
method comprising the following steps performed at the
server device:

indexing an information item to be sent to any client
entity, in the single server-initiated indexing table;

sending the information item to the client entity, causing
the client entity to also index the information item in a local
indexing table and to further process the received informa-
tion item locally; and

pushing the information item to the other client entities of
the plurality along with an indication that said pushed
information item is only to be added by the other client
entities to their respective local indexing tables used for
index-based decoding, so that all the client entities have the
same local indexing tables.

The above method and any corresponding server device
provide the same advantages as described above. In particu-
lar, since all the client entities have the same local indexing
tables, memory consumption at the server device is reduced.
Note that the plurality of client entities may represent a
subset of all the client entities that share a connection with
the server device.

The optional features defined above may also apply to this
method of exchanging information items: the way an initial
server-initiated indexing table may be built; the way the
information items are transmitted to the other client entities;
the way the initial server-initiated indexing table may be
updated; etc.

For example, the indication that said pushed information
item is only to be added to the respective local indexing
tables may result from the use of a PUSH_PROMISE frame
since it gives instruction to the client entity to only add the
information item to the local indexing table, or from the use
of a HEADER frame including the above-defined removal
instructions.

Another aspect of the invention relates to a non-transitory
computer-readable medium storing a program which, when

US 9,471,646 B2

11

executed by a microprocessor or computer system in an
apparatus, causes the apparatus to perform the steps as
defined above.

Another aspect of the invention relates to a method of
exchanging information items between a server device and
a plurality of client entities substantially as herein described
with reference to, and as shown in, FIG. 5; FIGS. 5 and 6;
FIGS. 5, 6 and 7; FIGS. 5, 6, 7 and 10 of the accompanying
drawings.

At least parts of the method according to the invention
may be computer implemented. Accordingly, the present
invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects which may
all generally be referred to herein as a “circuit”, “module” or
“system”. Furthermore, the present invention may take the
form of a computer program product embodied in any
tangible medium of expression having computer usable
program code embodied in the medium.

Since the present invention can be implemented in soft-
ware, the present invention can be embodied as computer
readable code for provision to a programmable apparatus on
any suitable carrier medium, for example a tangible carrier
medium or a transient carrier medium. A tangible carrier
medium may comprise a storage medium such as a floppy
disk, a CD-ROM, a hard disk drive, a magnetic tape device
or a solid state memory device and the like. A transient
carrier medium may include a signal such as an electrical
signal, an electronic signal, an optical signal, an acoustic
signal, a magnetic signal or an electromagnetic signal, e.g.
a microwave or RF signal.

BRIEF DESCRIPTION OF THE DRAWINGS

Other particularities and advantages of the invention will
also emerge from the following description, illustrated by
the accompanying drawings, in which:

FIG. 1 illustrates a mechanism of header encoding with
reference;

FIGS. 2a-2d illustrate indexing table generation accord-
ing to the prior art;

FIG. 3 provides an illustrative comparison of encoding a
set of HTTP headers in a response to the client entity, with
and without the invention;

FIGS. 4a-4d compare the exchanges for obtaining web
resources having links, without server push feature (FIG.
4b), and with server push feature according to two variants
(FIGS. 4¢ and 44).

FIG. 5 is a flowchart illustrating general steps at the server
device of a method of exchanging headers with a requesting
client entity;

FIG. 6 is a flowchart illustrating steps at the server device
of encoding a header set;

FIG. 7 is a flowchart illustrating steps of updating a static
header table according to the invention and of transmitting
it to client entities;

FIG. 8 is a flowchart illustrating steps of parallel decoding
of headers at the client side;

FIG. 9 illustrates an example of a device according to
embodiments of the present invention; and

FIGS. 10a-10e schematically illustrate the mechanisms to
share the static header table with a client entity according to
embodiments of the invention using HEADER or PUSH-
PROMISE frames according to HTTP/2.0.

5

10

15

20

25

30

35

40

45

50

55

60

65

12
DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The present invention concerns the exchange of items of
information associated with requested data, between a server
device and a plurality of client entities, wherein the infor-
mation items are encoded by the server device using an
indexing table before they are transmitted to the requesting
client entity over a corresponding connection.

In embodiments of the invention that are described below,
the information items are a set of HTTP headers composing
part of the response by the server device to the request from
the client entity.

According to the invention, the same single indexing table
is obtained and used as a server-initiated indexing table for
the server device to encode information items to be sent over
the connections with two or more client entities in the
server-to-client direction. In one embodiment, the same
single indexing table is used for all the client entities. In
variant, only a group of client entities may be concerned by
the single indexing table, in which case a second indexing
table may be considered by the server device for a second
group of client entities. One or more other groups may also
be considered. For example a group of mobile client devices
may oppose to a group of desktop client devices because
they have not the same processing capacities and thus
different indexing tables may be used (in particular regard-
ing their memory size). Another example is web-browser
based client entities vs. native application client entities.
This is the server device which, when receiving information
about a new client entity, determines which indexing table to
be used as server-initiated indexing table.

Explanations below are based on a single indexing table
for all the client entities.

To efficiently configure the client entities with the single
indexing table for them to be able to decode indexed
information items, the server device provides, in response to
receiving a first request for data from any of the client
entities, pushing at least one entry of the single indexing
table to the requesting client entity. Preferably all the entries
are pushed when the client entity has an empty local
decoding table. In a variant where the client local decoding
table is not empty, only the entries defining the differences
with the single indexing table are pushed. This is to save
transmission costs.

As a consequence of pushing the entries, the server device
may encode any information item associated with data
requested by any client entity, by using item indexing based
on the single indexing table known by each requesting client
entity, and then send the requested data along with the
encoded information times to the requesting client entity
over the connection established with it. Note that the pushed
entry or entries may actually be used to index some of the
information items to encode.

FIG. 3 provides an illustrative comparison of encoding a
set of HTTP headers in a response to the client entity, with
and without the invention.

In this example, the connection between the server device
and the client entity is expected to just start, where a first
message to send is response A 210 made of three headers as
shown in FIG. 2a, followed by response B 220 made also of
three headers as shown in FIG. 2.

With known mechanisms (i.e. without the invention), a
by-default initial server-initiated header indexing table 300
is used for all the connections. In the example, it includes
only one header (‘status: 200°).

US 9,471,646 B2

13

The encoding 301 of response A using known techniques
starts by encoding the status header as an indexed header
(IH) with index O since it is already present in the initial
indexing table 300. The next header “content-type: text/
html” is encoded as a new indexed literal header (LH) and
the header “content-length” is encoded as a not-indexed
literal header (LHN).

After the encoding 301 of response A, the header indexing
table thus includes, in addition to the status header, a new
entry corresponding to the header “content-type: text/html”.
This is shown as the second line in the dynamic header
indexing table 303 shown in the Figure. The encoded
response A can then be sent to the requesting client entity.

Next, response B header set is encoded (302) starting with
the status header encoded as an indexed header with index
0. It is followed by the “text/css” content-type header which
is encoded as a new indexed literal header and the header
“content-length” is encoded as a not-indexed literal header.
The encoded response B can then be sent to the requesting
client entity.

After the encodings of response A and response B, the
header indexing table is as shown in the Figure (reference
303) where a new entry (line 3) stores the “text/css” content-
type header. One may note that the two content-type headers
are ordered according to their use in the responses.

In contrast, the same encodings based on the invention are
illustrated in the right part of the Figure. The server device
generates a static header indexing table 310 that it pushes to
any client entity that establishes a connection with it.

The example of FIG. 3 bases the push of the static header
indexing table on PUSH_PROMISE frames defined in
HTTP/2.0 standard.

Server push is a feature introduced by the HTTP/2.0
standard. This feature allows server devices to send unso-
licited web resource representations to client entities.

Web resources such as web pages are known to usually
include links to other resources, which themselves may also
include links to other resources.

To fully display such a web resource at a requesting client
entity, all the linked and sub-linked therein need to be
discovered and corresponding resources to be retrieved by
the client entity. This incremental discovery may slow the
rendering of the web resource, in particular on high latency
networks such as mobile networks.

The server push feature is used to push these linked or
sub-linked resources before the client entity performs the
incremental discovery. Indeed, when receiving a request for
a given web resource, the server device may easily discover
the other resources needed for the entire rendering of the
requested resource. By sending at the same time the
requested resource and the discovered linked resources
using the push feature, the server device thus allows reduc-
ing the load time of the web resource.

The server push feature works typically as follow:

the server device receives an initial request from a client
entity and starts sending the content response;

the same time, the server device sends
PUSH_PROMISE messages (defined in HTTP/2.0) to
the client entity. The PUSH_PROMISE messages iden-
tify the other resources the server device is planning to
push. The goal of the PUSH_PROMISE messages is to
let the client entity knowing in advance which
resources will be pushed. In particular, this reduces the
risk for a client entity to send a request for the same
resource that is about to be pushed by the server device.
To further reduce this risk, the server device sends a
PUSH_PROMISE message before sending any portion of

at

20

25

40

45

50

14

the response to the initial request that refers to the resource
described in the PUSH_PROMISE messages. This also
allows the client entity to cancel the promised resources if
the client entity does not want those resources (the client
may already store them in memory);

the server device starts sending all the promised resources

listed in the sent PUSH_PROMISE message;

the server device finishes sending the response to the

client’s request and all promised resources;

the client entity receives the response to its request as well

as the promised resources listed in the received
PUSH_PROMISE message. The promised resources
are generally stored in a client cache, and the response
is used by a client application, for instance a browser
that will display the retrieved web page;

on performing the display, when the client application

needs one of the resources linked in the retrieved web
page, the needed resource is immediately retrieved
from the client cache because it has been pushed by the
server device, without incurring any network delay.

FIG. 4 compares the exchanges for obtaining web
resources having links, without the server push feature (FIG.
4b), and with the server push feature according to two
variants (FIGS. 4¢ and 44).

FIG. 4a shows an exemplary set of resources stored on the
server device and their relationship as a graph. The set of
resources R,, R,, R;, and R, is intertwined meaning that
these resources need to be downloaded together to be
understood. In addition, sub-resources A to H linked to these
intertwined resources are defined. The sub-resources are
related to one, two or three resources. For instance, A is
linked to R, and C is linked to R, R, and R,,.

FIG. 45 illustrates a typical HTTP exchange without using
the server push feature. First, the client entity requests
resource R;. Upon receiving it from the server device, it
discovers resource R, and sub-resources A, B, C and D. It
then requests them to the server device. Upon receiving
them, the client entity again discovers resources R;, R,, and
sub-resources E, F and G. After obtaining it on requesting
the server device, the client entity discovers sub-resources H
and I that it requests to the server device.

This typical HTTP exchange without the server push
feature requires four round-trips to retrieve the whole set of
resources and sub-resources.

In contrast, FIG. 4c¢ illustrates the retrieval of the same
resources by the client entity, using the server push feature.

First, the client entity requests resource R,. Upon receiv-
ing the request, the server device is able to discover directly-
connected sub-resources linked to R, namely sub-resources
A, B, C and D. In response to request R,, the server device
thus sends resource R, and pushes sub-resources A, B, C and
D to the client entity. The latter discovers that resource R,
is needed and then requests it to the server device. Upon
receiving the request, the server device is able to discover
directly-connected sub-resources linked to R,, namely sub-
resources F and G. In response to request R,, the server
device thus sends resource R, and pushes sub-resources F
and G to the client entity. The latter discovers that resources
R;, R, are needed and then requests them to the server
device, which in turns discovers sub-resources E, H and 1.
The server device then sends requested resources R;, R, and
pushes sub-resources E, H and 1.

This server-push-feature-based process requires three
round-trips to retrieve the whole set of resources.

FIG. 4d illustrates the retrieval of the same resources by
the client entity, using a slightly more aggressive server push

US 9,471,646 B2

15

strategy than in FIG. 4¢: the server device is able to push
linked resources in addition to directly-connected sub-re-
sources.

First, the client entity requests resource R,. Upon receiv-
ing the request, the server device is able to discover directly-
connected resource and sub-resources linked to R, namely
resource R, and sub-resources A, B, C and D. In response to
request R,, the server device thus sends resource R; and
pushes resource R, and sub-resources A, B, C and D to the
client entity. The latter discovers that resources R;, R,, and
sub-resources F, G are needed and then requests them to the
server device. Upon receiving the request, the server device
is able to discover directly-connected sub-resources linked
to the requested resources R, and R, namely sub-resources
E, H and I. In response to request R,, the server device thus
sends resources R, and R,, and pushes sub-resources E, H
and Ito the client entity.

This more aggressive process requires two round-trips to
retrieve the whole set of resources.

These examples of FIG. 4 show that the number of
round-trips is decreasing from four without PUSH to two
using an aggressive PUSH. It may be even decreased to one
single round trip in the degenerated case where the server
device pushes the whole set of linked resources at once.
Attention should be pay to the level of aggressiveness of the
push strategy because, as the strategy is more aggressive, the
probability that the server device pushes data that is not
useful or already cached in the client entity substantially
Srows.

They also show that the server device has the control on
what is pushed, when and in which order.

Back to FIG. 3, two PUSH_PROMISE messages or
frames 311/312 as defined in HTTP/2.0 are generated to
contain each a header block splitting the generated static
header table 310. One may note that the static header table
310 has been split into two header blocks in order to avoid
having two “status” headers in the same header set, which
may raise errors in specific implementations of the above-
mentioned standard.

Each PUSH_PROMISE frame includes two headers: one
“content-type” and one “status”, both encoded as indexed
literal header (IH). The four headers are sorted according to
their entry order in the static header indexing table 310.

That means that the pushed entries of the static header
indexing table 310 will be pushed to the requesting client
entity as new information items/headers to index, in the
same order as they are ordered in the single indexing table.
In addition, the static indexing table, and more generally the
pushed entries, are split into two or more ordered header
blocks that keep the order of the entries in the single
indexing table.

As soon as the server device receives an initial (or first)
request for data from a client entity, the server device sends
the two PUSH_PROMISE frames 311/312 one after the
other to the requesting client entity for the latter to configure
its local decoding indexing table. Indeed, the headers as
transmitted in the PUSH_PROMISE frames make it pos-
sible for the client entity to progressively build its decoding
indexing table until it reaches the same state as the static
header table 310 generated by the server device.

Once the frames have been sent, the header indexing table
is filled at the client entity side to make it possible for it to
decode headers sent by the server device. On the other hand,
the server device can now encode any header associated
with the requested data using header indexing based on the
pushed static header indexing table 310. Of course some
headers will be encoded as indexed headers (IH) and others

10

15

20

25

30

35

40

45

50

55

60

65

16

will be encoded as literal not-to-indexed headers (LHN), as
can be seen from response A set (313) and response B header
set (314).

FIG. 5 is a flowchart illustrating general steps at the server
device of a method of exchanging information items with a
requesting client entity.

The server device starts at step 500 by generating the
static header indexing table 310 that the server device
intends to use as server-initiated indexing table for it to
encode information items to be sent over the connection
with the client entities (i.e. the encoding indexing table at the
server side) in the server-to-client direction.

According to embodiments, the single header indexing
table is computed from past statistics on information items/
headers already encoded by the server device over two or
more connections established with client entities, for
example by detecting the most popular already-encoded
headers.

Several algorithms may be contemplated.

Typically, the server device may log every header that it
is sending during a given period of time. The log may be
used to generate a list of headers, which list is ordered
according to an ordering criterion.

One possible ordering criterion is the number of occur-
rences of each header. The header with the highest number
of occurrences is placed at the top of the list. If the number
of occurrences is the same for two headers, the smaller
header is placed above the largest header (in terms of
characters or symbols).

This makes it possible to build the single header indexing
table from the N first headers in the list, N being computed
to reach a maximum memory threshold, for instance 4096
bytes.

One other possible ordering criterion is the compression
efficiency of the headers. The compression efficiency may be
defined as the average number of bytes it may be saved by
indexing the header. It depends on both the statistical
number of occurrences of the header (on a sliding window
for example) and the length of the header compared to the
length of the substituting encoding index.

Yet another possible ordering criterion may be to mini-
mize the size of the frames (defined below) used to convey
the static header table.

For instance, where it is possible to encode a continuous
group of headers with a single reference to a continuous
group of header entries of the static header table 310, it may
be beneficial to actually group those headers to take advan-
tage of the single reference. Indeed, this needs few bits to
encode compared to encoding each header individually.

In a similar manner, if the header table size is not a
constraint, the same header entry may be assigned two or
more indexes in the static header table to obtain bigger
groups of headers that can benefit from the single reference.

Once the static header table 310 has been computed, it is
optionally split into ordered header blocks at step 501. The
static header table 310 can be seen as a big set of headers.
And the idea here is to split this big set into two or more
smaller sets of headers.

The splitting of the static header table is performed to
ensure all HT'TP/2.0 syntactic rules to be met and to ensure
the header blocks, once decoded by any HTTP client entity,
not to raise any error. As an example of syntactic rule, there
are client entities that do not agree to process a header block
with two ‘status’ headers therein. This is because if such
client entity detects a two-status-header error, it immediately

US 9,471,646 B2

17

stops the connection with the server device and starts a new
one. This would lead to wasting bandwidth and processing
cycles.

Next to step 501, i.e. once the header blocks are available,
one frame is generated per header block at step 502, this
frame being configured to push the respective header block
of the static header table to the client entity.

Examples of frames are PUSH_PROMISE frames as
defined in HTTP/2.0 or HEADERS frames as defined in
HTTP/2.0 or former version when PUSH_PROMISE frame
feature is not available (for example the client entity may
declare that it does not want to receive PUSH_PROMISE
frames).

Note that these frames do not transmit the static header
table or its entries as such, but transmit headers with a flag
requesting the client entity to index them. So the client entity
receiving them reconstructs a decoding table that, at last, has
the same state as the initial static header table. This is why
the order of the headers therein and the order of the frames
should be respected.

Additional headers may be added to the frames to ensure
validity of the frames. For instance, a PUSH_PROMISE
frame should contain a ‘status’ header to meet HTTP/2.0
requirements.

The frames are ordered so that the headers therein keep
their order defined in the single header indexing table 310.
The order of the frames is thus the same as the order of the
header blocks.

These steps 500 to 502 may be done on setting up the
server device, for example at server launch time.

Once the server device is started, steps 503 to 506
described below are executed to process a request for data
from a client entity and to push entries or all of the static
header table 310 to that client entity.

At step 503, the server device waits for a new request
from a client entity.

Upon receiving a request for data, the server device
determines at step 504 whether this request comes from a
new connection, i.e. if it is the very first request for data from
the client entity.

If it is, the server device pushed the whole static header
table 310 by directly sending the frames generated at step
502, to the requesting client entity. This is step 505.

As briefly introduced above, embodiments provide that
the pushed entries of the single indexing table are pushed to
the requesting client entity using one or more
PUSH_PROMISE frames defined in the HTTP/2.0 standard
that keep the order of the entries in the single indexing table.

In alternative embodiments, a HEADER frame defined in
the HTTP/2.0 standard is used to send the response to the
client entity’s request, and the HEADER frame includes the
pushed entries of the single indexing table keeping their
order in the single indexing table, followed by encoded
information items associated with the requested data. To
provide the static header table 310 to the client entity as soon
as possible, this is usually the first HEADER frame forming
the response to the client entity’s request that is used to
include the entries of the static header table 310.

Each entry of the static header table 310 is serialized twice
in the header block: first it is serialized as a header using the
indexed literal representation (LH) as defined in HTTP/2.0.
This is to instruct the client to build the same static header
table. Upon decoding the indexed literal representation of
the headers, the client adds these decoded headers to a local
current header set and the client header indexing table is
filled with all expected entries to match the server static
header table.

10

15

20

25

30

35

40

45

50

55

60

65

18

Each entry is then serialized again, this time as a header
using the indexed representation (IH), since the header
matches an entry in the static header indexing table. This
additional instruction is used to remove the header from the
current client header set while leaving the header indexing
table unchanged. The additional cost of this instruction is
low, about one or two bytes per entry. Once the client has
decoded the second serialized headers, the current client
header set is empty while the client header indexing table
perfectly matches the static header table generated at the
server device. In other words, the HEADER frame includes,
prior to the encoded headers associated with the requested
data, a removal instruction for each pushed entry to instruct
the requesting client entity to remove each corresponding
header from the current client header set.

Finally, the headers of the response, i.e. associated with
the requested data, are serialized at the end of the header
block. The header block can then be sent to the client entity.
Note also that this approach may also be used by a client
entity wishing to send immediately to the server device its
own static header table.

Due to the control of the server device on the sending of
the frames, the server device is able to keep the frame order
(and thus the header order) as computed at step 502.

Once the frames have been sent to the client entity, the
server device can answer the client’s request, with a new
frame following the PUSH_PROMISE frame or with head-
ers associated with the requested data, which headers are
appended to the pushed headers in the HEADER frame. This
is step 506. Next, the server device waits for a next request
at step 503.

The push of the static header table 310 to the client entity
makes it possible to configure the client entity with the same
static header table at the beginning of processing its request.

During step 506 of processing the client’s request, the
server device retrieves the requested data and associated
headers and encodes them using header indexing based on
the static header table 310. This provides rather good
compression level right from the first headers to encode.

FIG. 10 schematically illustrates the mechanisms to share
the static header table with a client entity according to
embodiments of the invention using HEADER or PUSH-
PROMISE frames according to HTTP/2.0.

FIG. 10a shows three ordered headers H1-H3 composing
the static header table 310 at the server side.

FIG. 104 illustrates the situation when the client entity has
decoded the first part of the header block that serializes the
three headers in a HEADER frame. As explained above, the
client entity builds its decoding header table similar to the
static header table generated by the server device. In addi-
tion, the decoding leads to having a local current header set
filled with the three headers.

Next, the second part of the header block that serialized
the indexed same headers is received and processed by the
client entity. It is recalled here that the second header block
corresponds to removal instructions. As shown in FIG. 10c¢,
each indexed header OHO), TH(2), TH(3)) leads to remove
the corresponding headers from the local current header set.
As a consequence, an empty local current header set is
obtained.

This is the end of configuring the client entity with the
static header table 310.

Next, the server device can encode headers required for
the response to the client’s request (FIG. 10d). In the
example, there are three headers H1, H2 and H4 forming a
third part of the header block. H1 and H2 are encoded using
an index (IH(1), IH(2)) because they are present in the

US 9,471,646 B2

19

header indexing table. On the other hand, H4 is encoded as
a not-indexed literal header (LNH(4)) to avoid adding a new
entry in the static header indexing table which is shared by
several client entities.

It results that the three headers H1, H2, H4 are added to
the empty local current header set.

Finally, FIG. 10d visually shows the structure of the
HEADER frame with a single header block made of a first
part including the first serialized headers, a second part
including the removal instructions which are indexed head-
ers, and a final third part including the encoded headers that
the client entity needs as part of the response to its request.

FIG. 10¢ illustrates the situation based on the
PUSH_PROMISE frames. Since the headers in the
PUSH_PROMISE frame do not feed the client current
header set, only the first serialized headers H1, H2, H3 using
literal encoding are included in the PUSH_PROMISE frame
to configure the decoding header indexing table at the client
side. Then a HEADER frame is used to convey the header
H1, H2, H4 to transmit to the client entity.

The encoding of a header set is now described with
reference to FIG. 6.

The first step 600 consists in obtaining a header to encode,
i.e. a header required for the response to the client request.

Next, at step 601, it is determined whether or not the
current header can be defined by a template entry of the
static header table 310. A template entry is defined by a
header name, an index and no specific (or defined) header
value.

Reasons to use template entries is that the header value of
headers having the same header name may differ from one
connection to another. Examples of such headers include the
‘host’ request header value that does not change during the
whole connection. Similarly, the ‘cookie’ request header
value generally does not change during the whole server
session and if changing, the old value is no longer used. A
list of template headers may be statically defined, a template
entry thus being an entry in the static header table that
matches one header name of the list of template headers.

In the context of the invention where the same static
header table is used for the plurality of connections with
client entities, it is thus highly beneficial to assign the same
header index to headers having the same header name in all
connections so that these headers can be optimized jointly
with the invention.

If test 601 determines that the current header can be
defined using a template entry, the header value of the
current header is replaced to match the template entry, at step
602. This is because the template entry has a header value
corresponding to the first occurrence of this header that has
been indexed in the static header table.

Note that a specific complementary table may be used to
store the header values that have been replaced, because
these values need to be encoded and sent to the requesting
client entities.

Next to step 602 or if test 601 is negative, a search is
performed within the static header table 310 to find a table
entry that matches the current header. This is step 603.

If'the current header is already indexed, the current header
is encoded as an indexed header with corresponding index
retrieved from the table. This is step 604. Next to step 604,
header statistics may be updated at step 605.

If the current header is not indexed, the current header is
encoded as not-indexed literal header. This is step 606. Next
to step 606, header statistics may be updated at step 605.

20

30

40

45

20

Using not-indexed literal representation makes it possible to
avoid any dynamic evolution of the static indexing table at
the server and client sides.

In such embodiments, the server device updates statistics
on headers upon encoding them using header indexing based
on the static header indexing table 310. For example, the
statistics may include a hit/miss ratio of the static header
indexing table when encoding the headers, i.e. the number of
times an index is found (hits) in the indexing table when
encoding the header out of the number of times such an
index is not found (misses).

Storing the hits and misses may help to evaluate how
relevant and efficient the static header table 310 is in the
exchange of data with the client entities, with a view of
updating the table if necessary as described below.

The statistics may combine results for all connections or
may be dedicated to each connection independently.

Next to step 606, the process iterates at step 607 (loops
back to step 600 for considering the next header) until the
whole header set has been encoded. Then the process ends
at step 608.

As introduced above, the server device may update the
static header indexing table 310 based on updated past
statistics on the plurality of connections, to adjust the static
header table to the evolving context of exchanged data. Also,
various ways may be envisaged to apply the updated static
header table to existing connections and to new connections.

This is now described with reference to FIG. 7.

A first updating approach may consist in periodically
checking on all the connections with the client entities
whether updating the table would provide benefits or not.

Since the web server usage of headers may evolve over
time, the static header table, which was computed at a given
time, may progressively become less relevant for efficient
header compression.

The process starts at step 700 by waiting for the need to
update the static header table 310. Various triggering crite-
rion may be contemplated, generally based on header index-
ing statistics, for instance as generated at step 605 above.

As an example, the updating is triggered when updated
past statistics representing a hit/miss ratio of the static
header indexing table becomes lower than a predetermined
threshold. That means that the server device monitors the
hits and misses of the static header table. Indeed, as no
indexing of new header in the static header table happens,
the hit/miss ratio may decrease.

A criterion may be based on the hit/miss ratio on a
sufficiently large number of header sets so that the ratio does
not suffer from large fluctuations.

If the hit/miss ratio decreases below a threshold, e.g. 75%
of'the initial hit/miss ratio, it may be time to update the static
header indexing table 310.

In a variant of triggering criterion, an average compres-
sion ratio of last encoded data is computed and the update is
triggered when the average compression ratio becomes
lower than a predetermined threshold.

To achieve this variant, the compression ratio of each
header set is first computed and then averaged over a number
of header sets. If the overall compression ratio (overall
considering all the header sets) remains stable, the header
table may remain the same. However, if the compression
ratio drops below a threshold, e.g. below 75% of the original
compression ratio, it may be time to update the header table.

Once a need to update the header table is detected at step
700, a static header table update is computed at step 701.

US 9,471,646 B2

21

A first approach is to perform again the whole static
header set computation from the last statistics, as explained
above at step 500.

To minimize the changes in the static header table 310 and
therefore to minimize the size in bytes of the update (update
messages to be sent to the client entities), embodiments
provides that the new header entries are sorted according to
the static header table before updating.

A first approach is the following: a new entry of the
updated static header indexing table is assigned the same
index as an entry of the old static header indexing table that
matches the new entry. This allows coding no instruction for
all those headers that already exist.

However, other new headers to encode remain. As much
as possible, a new entry (among the remaining headers)
having an entry name and an entry value in the updated
single indexing table is assigned the same index as an entry
of'the old single indexing table that has the same entry name
but a different entry value. This allows using substitution
encoding without having to re-encode the header name.

Then, all remaining new headers are encoded using either
a literal representation or a substitution representation to
cope with removal of old entries.

The static header table update (and thus instructions to
send to the client entities) then consists in entries substitu-
tion, entries removal and entries insertion. Only the differ-
ences between the previous and updated single indexing
tables are pushed.

In embodiments, a PUSH_PROMISE frame is generated
at step 702 from the updated static header table by using
substitution representations and incremental indexing rep-
resentations. Note that no instruction is provided for
unchanged table entries.

Also, it may be noted that the option of generating header
blocks from the updated static header table is also a valid
option to transmit static header table update information.

Once the PUSH_PROMISE frame has been generated,
the server device may inform each connection that a new and
updated static header table is available. This is step 703.

For example, the server device may send the
PUSH_PROMISE frames to all open connections so that
each connection automatically switches to the new and
updated static header table.

Note that if the server device cannot send a
PUSH_PROMISE frame (e.g. because the connection with
the client entity is temporarily closed), the server device
needs to wait for the next request from the client entity to be
able to send the frames.

Alternatively to the use of PUSH_PROMISE frames,
each connection may switch to the new and updated static
header table once a new HEADER frame containing headers
is to be emitted. The new HEADER frame will include the
static header table update information (i.e. the differences
with the previous static header table). In such a case, each
connection stores whether it has switched from the old static
header table to the new and updated one.

Then the process stops at step 704 when each connection
has switched to the new and updated static header table.

Steps 710 to 713 describe how the server device can apply
a header table update on a given connection as a
PUSH_PROMISE frame.

Note that on the client side, usual client implementations
update the static header table transparently.

At step 710, the server device waits for a header block to
be sent on a given connection. The sending of such a header

10

15

20

25

30

35

40

45

50

55

60

65

22

block typically happens when the server device receives a
request from the client entity corresponding to the connec-
tion.

Once a header block is ready to be sent, the server device
checks at step 711 whether a header table update is to be
applied for the connection.

If so, the server device first sends at step 712 the
PUSH_PROMISE frame prepared at step 702 and then
sends at step 713 the requested header block.

In a variant relying for example on the HEADER frame
to respond the client’s request, the requested header block
may be appended to the header table update information that
is first inserted in the HEADER frame.

In the case no header table update is to be sent, the header
block is directly sent at step 713 using known techniques, for
example using a HEADER frame.

In the embodiments described above, the updated static
header table is applied in the existing connections.

Embodiments of the invention may however provide that
all entries of the updated static header indexing table are
pushed only to any client entity establishing a new connec-
tion with the server device, the already existing connections
with the server device relying on the old static header
indexing table.

The choice between the first embodiments and these
new-connection-based embodiments may depend on the
average duration of a connection. For example, in case of
short-time connection, the last approach is probably the best
choice as the headers will not change a lot. However, in case
of longer connection, preference may be given to the first
approach.

Although the above is based on a unique static header
table (except updating) defined by the server device and
pushed to the client entities, additional entries specific to a
connection may be used, the additional entries correspond-
ing to headers that are indexed when encoded. This makes
it possible to augmenting the static header indexing table
used as server-initiated indexing table for the connection
with the client entity.

The decision to use such additional entries may be trig-
gered on detecting a low compression ratio and/or low
connection quality of the connection compared to a respec-
tive threshold. For example it may be more beneficial to
optimize header compression for mobile connections than
for broadband connections.

In that case, the connection-specific header entries (or
dynamic entries) are assigned indexes at the end of the static
header table.

Note that the server device may use a dynamic header
table separate from the static header table to store the
dynamic entries, for each connection that requires dynamic
entries. The need to separate the two tables comes from the
fact that the static header table is shared by all the connec-
tions engaged by the server device.

On the other hand, the client entity may group all the static
and dynamic entries into a single indexing table.

The server device may then decide to optimize specific
connections using small additional dynamic entries while
leaving most of the connections as is.

The update of both the static and dynamic header tables
may be done in similar ways as described above with
reference to FIG. 7.

On the contrary, when no dynamic entries are allowed, for
each connection in the server-to-client direction, the
obtained static header indexing table is used without index-
ing any new header in the table.

US 9,471,646 B2

23

In embodiments of the invention, when the server device
encodes headers for one connection, it may decide whether
to index the headers to the header indexing table using
conventional decision criterion, for instance based on the
header names. At the end of the encoding of the current
header set, if the header indexing table has been updated, the
server device sends the necessary information to all other
connections to update their header indexing table. The
necessary update information is transmitted using
PUSH_PROMISE frames and only includes information
defining the differences between the previous header index-
ing table and the new one.

This approach is advantageously used for a reasonably
small set of clients. Indeed, since particular implementations
of'this approach may require to lock the access to the header
indexing table when a HEADER frame is to be sent, this
may be less practical when the server device handles a large
number of active connections.

For sake of completeness, the possibility of client-side or
proxy-side parallel processing of incoming frames whenever
the client entity knows that the static header table will not
evolve except in the case of PUSH_PROMISE frames is
now described with reference to FIG. 8.

Frames containing headers and received by the client
entity are ordered.

Usually, HEADERS frames must be processed one after
the other since the processing of one HEADER frame
impacts the representation of the next frame header set.

In embodiments of the present invention where no
dynamic entries are allowed and the diff encoding between
two frames has been disabled, since the header indexing
table is static, all HEADERS frames between two
PUSH_PROMISE can be processed in parallel.

As soon as a PUSH_PROMISE frame is received, mean-
ing that an update of the static header table happens, all
HEADERS frames before the PUSH_PROMISE frame are
processed to ensure that they are using the right static header
table (before update). The PUSH_PROMISE frame is then
processed alone with potential update of the static header
table. Then the parallelization of the next HEADERS frames
may resume.

To achieve that, the process starts at step 800 by receiving
a frame to process.

The processor checks at step 801 whether the received
frame includes a header set.

If not, the received frame can be processed at step 802 and
the process is ends at step 810 for that frame.

Otherwise, if the received frame includes header infor-
mation, two types of frames must be discriminated.

First it is determined at step 803 whether or not the
received frame is a PUSH_PROMISE frame. If it is, the
static header table must be updated using header table
update information comprises in the frame.

To do that, the processor first uses a flag in memory to
store at step 804 the fact that the static header table is being
updated. This is to ensure new frames containing headers to
be only processed after the static header table has been
updated.

Next, the header table update information is gathered
from the PUSH-PROMISE frame at step 805, and then the
static header table is actually updated at step 806, at the end
of which the flag of step 804 is emptied.

If the received frame is not a PUSH_PROMISE frame, the
processor checks at step 807 whether a PUSH_PROMISE
frame is under processing. This is done by checking the flag
of step 804.

10

15

20

25

30

35

40

45

50

55

60

65

24

If a PUSH_PROMISE frame is under processing, the
processor waits for the completion of the PUSH_PROMISE
processing, i.e. of the update of the static header table. This
is step 808.

In other words, the processing of any new frame is
blocked until the static header table has been updated (i.e.
the PUSH_PROMISE frame has been processed).

If no PUSH_PROMISE frame is under processing or if its
processing has ended, the processor starts the header pro-
cessing of the frame at step 809. This step may use existing
parallel hardware to improve the performances of the frame
processing. The process ends afterwards at step 810.

In a variant that allows processing the PUSH_PROMISE
frame without waiting for the completion of all HEADERS
frames, the static header frame may be duplicated for each
parallel processing of headers. Note that blocking step 708
remains whenever a PUSH_PROMISE frame is received but
not fully processed.

FIG. 9 shows a device 10, in which one or more embodi-
ments of the invention may be implemented, illustrated
arranged in cooperation with a digital camera 5, a micro-
phone 6 (shown via a card input/output 11), a telecommu-
nications network 3 and a disc 7, comprising a communi-
cation bus 12 to which are connected:

a central processing CPU 13, for example provided in the

form of a microprocessor

a read only memory (ROM) 14 comprising a program
14 A whose execution enables the methods according to
an embodiment of the invention. This memory 14 may
be a flash memory or EEPROM;

a random access memory (RAM) 16 which, after power-
ing up of the device 10, contains the executable code of
the program 14A necessary for the implementation of
an embodiment of the invention;

a screen 18 for displaying data such as HTTP messages
and/or serving as a graphical interface with the user,
who may thus interact with the programs according to
an embodiment of the invention, using a keyboard 19
or any other means e.g. a mouse (not shown) or
pointing device (not shown);

a hard disc 15 or a storage memory, such as a memory of
compact flash type, able to contain the programs of an
embodiment of the invention as well as data used or
produced on implementation of an embodiment of the
invention;

an optional disc drive 17, or another reader for a remov-
able data carrier, adapted to receive a disc 7 and to
read/write thereon data processed, or to be processed,
in accordance with an embodiment of the invention
and;

a communication interface 9 connected to a telecommu-
nications network 34

connection to a digital camera 5

The communication bus 12 permits communication and
interoperability between the different elements included in
the device 10 or connected to it. The representation of the
communication bus 12 given here is not limiting. In par-
ticular, the CPU 13 may communicate instructions to any
element of the device 10 directly or by means of another
element of the device 10.

The disc 7 can be replaced by any information carrier such
as a compact disc (CD-ROM)), either writable or rewritable,
a ZIP disc or a memory card. Generally, an information
storage means, which can be read by a micro-computer or
microprocessor, which may optionally be integrated in the
device 10, is adapted to store one or more programs whose

US 9,471,646 B2

25

execution permits the implementation of the method accord-
ing to an embodiment of the invention.

The executable code enabling the coding device to imple-
ment an embodiment of the invention may be stored in ROM
14, on the hard disc 15 or on a removable digital medium
such as a disc 7.

The CPU 13 controls and directs the execution of the
instructions or portions of software code of the program or
programs of an embodiment of the invention, the instruc-
tions or portions of software code being stored in one of the
aforementioned storage means. On powering up of the
device 10, the program or programs stored in non-volatile
memory, e.g. hard disc 15 or ROM 14, are transferred into
the RAM 16, which then contains the executable code of the
program or programs of an embodiment of the invention, as
well as registers for storing the variables and parameters
necessary for implementation of an embodiment of the
invention.

It should be noted that the device implementing an
embodiment of the invention, or incorporating it, may be
implemented in the form of a programmed apparatus. For
example, such a device may then contain the code of the
computer program or programs in a fixed form in an
application specific integrated circuit (ASIC).

The device 10 described here and, particularly, the CPU
13, may implement all or part of the processing operations
described above with reference to FIGS. 5 to 8.

The above examples are merely embodiments of the
invention, which is not limited thereby.

The invention claimed is:

1. A method of exchanging information items between a
server device and a plurality of client entities, the server
device establishing a plurality of connections with the
plurality of client entities, wherein each connection involves
a server-initiated indexing table for the server device to
encode information items to be sent over the connection in
the server-to-client direction, the method comprising the
following steps performed at the server device:

obtaining a same single indexing table as the server-

initiated indexing table of the connections with two or
more client entities; and

in response to receiving a request for data from any of the

two or more client entities:

pushing at least one entry of the single indexing table to

the requesting client entity to configure the latter for
decoding encoded information items exchanged in the
server-to-client direction,

encoding information items associated with the requested

data using item indexing based on the single indexing
table, and

sending the requested data along with the encoded infor-

mation items to the requesting client entity over the
connection established with it, after having pushed the
at least one entry to the requesting client entity.

2. The method of claim 1, wherein all the entries of the
single indexing table are pushed to the requesting client
entity before sending one or more information items asso-
ciated with the requested data.

3. The method of claim 1, wherein the same single
indexing table is defined as the server-initiated indexing
table of all the connections the server device has established
with client entities.

4. The method of claim 1, wherein the single indexing
table is used to index HTTP headers in HTTP responses.

5. The method of claim 4, wherein a pushed entry of the
single indexing table includes a template entry defined by a
header name, an index and no specific header value.

10

15

20

25

30

35

40

45

50

55

60

65

26

6. The method of claim 1, wherein the entries to be pushed
of the single indexing table are split into two or more
ordered blocks that keep the order of the entries in the single
indexing table, and the resulting blocks are pushed to the
requesting client entity following the order.

7. The method of claim 1, wherein the pushed entries are
pushed to the requesting client entity as new information
items to index, in the same order as they are ordered in the
single indexing table.

8. The method of claim 6, wherein the pushed entries of
the single indexing table are pushed to the requesting client
entity using one or more PUSH_PROMISE frames defined
in the HTTP/2.0 standard that keep the order of the entries
in the single indexing table.

9. The method of claim 1, wherein the response sending
the requested data along with the encoded information items
includes a HEADER frame defined in the HTTP/2.0 stan-
dard, and the HEADER frame includes the pushed entries
keeping their order in the single indexing table, followed by
a removal instruction for each pushed entry to instruct the
requesting client entity to remove each corresponding infor-
mation item from a current decoded information item set,
further followed by the encoded information items.

10. The method of claim 9, wherein the removal instruc-
tion in the HEADER frame to remove an information item
is the same information item encoded using the correspond-
ing index in the single indexing table.

11. The method of claim 1, further comprising, at the
server device, updating the single indexing table based on
updated past statistics on the connections with the two or
more client entities.

12. The method of claim 11, wherein the updating is
triggered when updated past statistics representing a hit/miss
ratio of the single indexing table when encoding the infor-
mation items using item indexing or when an average
compression ratio of last encoded information items
becomes lower than a predetermined threshold.

13. The method of claim 11, wherein a new entry having
an entry name and an entry value in the updated single
indexing table is assigned the same index as an entry of the
old single indexing table that matches the new entry or is
assigned the same index as an entry of the old single
indexing table that has the same entry name but a different
entry value.

14. The method of claim 11, wherein all entries of the
updated single indexing table are pushed only to any client
entity establishing a new connection with the server device,
the already existing connections with the server device
relying on the old single indexing table.

15. The method of claim 11, wherein entries of the
updated single indexing table are pushed to the client entities
of all open connections using one or more
PUSH_PROMISE frames defined in the HTTP/2.0 standard.

16. The method of claim 1, further comprising, at the
server device, augmenting the single indexing table used as
server-initiated indexing table for a connection with a client
entity with additional entries specific to the connection, the
additional entries corresponding to encoded information
items associated with data requested on the connection.

17. The method of claim 1, further comprising using, for
each connection in the server-to-client direction, the
obtained single indexing table without indexing any new
item selected from the encoded information items associated
with the data requested on the connection.

18. A server device configured to exchange information
items with a plurality of client entities, the server device
including:

US 9,471,646 B2

27

a communication module to establish a plurality of con-
nections with the plurality of client entities, wherein
each connection involves a server-initiated indexing
table for the server device to encode information items
to be sent over the connection in the server-to-client
direction;

a memory for storing a single indexing table used as the
server-initiated indexing table of the connections with
two or more client entities;

a processor for executing an indexing table push instruc-
tion configured, in response to receiving a request for
data from any of the two or more client entities, to push
at least one entry of the single indexing table to the
requesting client entity to configure the latter for decod-
ing encoded information item exchanged in the server-
to-client direction;

a data encoder configured to encode information items
associated with the requested data using item indexing
based on the single indexing table, wherein the
requested data are sent along with the encoded infor-
mation items to the requesting client entity over the
connection established with it, after the indexing table
push module has pushed the at least one entry to the
requesting client entity.

15

20

28

19. A method of exchanging information items between a

server device and a plurality of client entities, the server
device generating a single server-initiated indexing table for
the server device to encode information items to be sent over
any connection with a client entity in the server-to-client
direction, the method comprising the following steps per-
formed at the server device:

indexing an information item to be sent to any client
entity, in the single server-initiated indexing table;

sending the information item to the client entity, causing
the client entity to also index the information item in a
local indexing table and to further process the received
information item locally; and

pushing the information item to the other client entities of
the plurality along with an indication that said pushed
information item is only to be added by the other client
entities to their respective local indexing tables used for
index-based decoding, so that all the client entities have
the same local indexing tables.

20. A non-transitory computer-readable medium storing a

program which, when executed by a microprocessor or
computer system in a device, causes the device to perform
the steps of claim 1.

